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Abstract
This study is to evaluate the performance of fully Bayesian information criteria, 
namely, LOO, WAIC and WBIC in terms of the accuracy in determining the num-
ber of latent classes of a mixture IRT model while comparing it to the conventional 
model via non-random walk MCMC algorithms and to further compare their perfor-
mance with conventional information criteria including AIC, BIC, CAIC, SABIC, 
and DIC. Monte Carlo simulations were carried out to evaluate these criteria under 
different situations. The results indicate that AIC, BIC, and their related CAIC and 
SABIC tend to select the simpler model and are not recommended when the actual 
data involve multiple latent classes. For the three fully Bayesian measures, WBIC 
can be used for detecting the number of latent classes for tests with at least 30 items, 
while WAIC and LOO are suggested to be used together with their effective number 
of parameters in choosing the correct number of latent classes.

Keywords  Mixture IRT models · Information criteria · No-U-Turn sampler · LOO · 
WAIC · WBIC

1  Introduction

Conventional unidimensional item response theory (IRT) models assume that the 
observed response data stem from a homogenous population of individuals. How-
ever, under many test situations, and especially in situations where a mixture of sev-
eral latent classes (i.e., subpopulations) is involved, fitting a conventional IRT model 
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to the data produces biased estimates of model parameters (e.g., De Ayala et  al. 
2002). As a result, mixture IRT (MixIRT) models (Rost 1990) were developed to 
capture the presence of these latent classes that are qualitatively different but within 
which a conventional IRT model holds. De Ayala et al. (2002) further showed how 
the occurrence of differential item functioning (DIF) items can be explained by real-
izing that the data do not come from a homogenous population of individuals but 
are a mixture of multiple populations. In the MixIRT modeling framework, persons 
are characterized by their location on a continuous latent dimension as well as by 
their latent class membership. Also, each subpopulation has a unique set of item 
parameters.

Different estimation methods have been developed to estimate IRT models, with 
the current focus on the fully Bayesian estimation based on Markov chain Monte 
Carlo (MCMC; Hastings 1970; Metropolis and Ulam 1949; Metropolis et al. 1953) 
techniques. Researchers have documented its advantages over the traditional maxi-
mum likelihood estimation (MLE; Fisher 1922) methods in estimating various IRT 
models (e.g., Finch and French 2012; de la Torre et al. 2006; Wollack et al. 2002). 
The MLE method may result in infinite or implausible parameter estimates in sit-
uations where unusual response patterns are encountered such as perfect or zero 
scores. On the other hand, the fully Bayesian estimation via the use of the MCMC 
simulation techniques approximates the joint posterior distribution of all model 
parameters, and hence accounts for the uncertainty associated with any parameter 
estimation. However, using MCMC can be time consuming and computationally 
expensive. Recent developments of MCMC focus on non-random walk MCMCs 
such as the no-U-turn sampler (NUTS; Hoffman and Gelman 2014), which avoids 
the inefficient exploration of the parameter space via random walks. Consequently, 
NUTS converges to the posterior distribution faster than the common MCMC algo-
rithms such as Gibbs sampling (Geman and Geman 1984) and Metropolis–Hastings 
(MH; Hastings 1970; Metropolis and Ulam 1949) even for complex models such 
as MixIRT models. Indeed, Luo and Jiao (2017) showed how NUTS was efficient 
in fitting various IRT models, namely the three-parameter logistic (3PL; Birnbaum 
1968) IRT model, the graded response model (GRM; Samejima 1969), and the 
nominal response model (NRM; Bock 1972). For example, they found that around 
200 iterations were sufficient to reach convergence for dichotomous IRT mod-
els (including the one-, two-, and three-parameter logistic models). Uto and Ueno 
(2020) also demonstrated the advantage of NUTS in estimating a complex general-
ized many‑facet Rasch model that simultaneously incorporates three-rater character-
istic parameters, including severity, consistency, and range restriction, especially for 
data with relatively small sample sizes.

Previous work on estimating mixture IRT models using MCMC algorithms 
focused mainly on implementing Gibbs sampling (e.g., Cho et al. 2013). In an effort 
of applying NUTS to a two-parameter MixIRT model, Al Hakmani and Sheng 
(2019) demonstrated the accuracy of NUTS in recovering model parameters and 
class membership of individual persons although the recovery of the class mem-
bership was not satisfactory for test situations where more than two classes were 
involved. Given the efficiency of NUTS, this study focuses on using it to evalu-
ate three fully Bayesian information criteria, namely, the widely applicable (or 



95

1 3

Behaviormetrika (2023) 50:93–120	

Watanabe–Akaike) information criterion (WAIC; Watanabe 2010), the widely appli-
cable Bayesian information criterion (WBIC; Watanabe 2013), and the leave-one-
out cross-validation (LOO) implemented through a Pareto smoothed important sam-
pling (LOO-PSIS; Vehtari et al. 2017), in the context of MixIRT models in terms 
of the accuracy in determining the number of latent classes, and further to compare 
the performance of these fully Bayesian information criteria with other information 
criteria.

In the literature, various forms of information criteria, under either the frequen-
tist or the Bayesian framework, have been used to assess the fit of conventional IRT 
and MixIRT models, including the popular Akaike’s information criterion (AIC; 
Akaike 1974), Bayesian information criterion (BIC; Schwarz 1978), and deviance 
information criterion (DIC; Spiegelhalter et al. 2002). Two adjusted forms of AIC 
and BIC, namely, consistent AIC (CAIC; Bozdogan 1987) and sample-size-adjusted 
BIC (SABIC; Sclove 1987), have been less commonly used in detecting the number 
of latent classes in the MixIRT literature.

While Vehtari et  al. (2017) noted that the above-referenced criteria are not 
fully Bayesian and instead recommended the use of the WAIC and the LOO-PSIS 
indices, previous research has mainly focused on using them to evaluate their 
performance in fitting MixIRT models in the fully Bayesian framework. Specif-
ically, Choi et  al. (2017) investigated the performance of AIC, BIC, corrected 
AIC (AICc; Sugiura 1978), and SABIC in detecting the correct number of latent 
classes in the two-class mixture Rasch model. Their results revealed that the four 
information criteria performed differently under different class-distinction con-
ditions with the overall conclusion that AICc and SABIC performed compara-
ble to or better than AIC and BIC. Also, Lee and Beretvas (2014) evaluated the 
performance of AIC, BIC, CAIC, and SABIC in identifying the correct mixture 
Rasch model while manipulating DIF effect sizes and latent class proportions. 
Their findings indicated that these information criteria performed better with 
equal class proportions than unequal class proportions, and that for the condi-
tion of equal class proportions and small DIF effect sizes, the AIC performed 
better than other criteria in selecting the correct model. Alternatively, Li et  al. 
(2009) examined the performances of AIC, BIC, and DIC in selecting the correct 
MixIRT model among three competing models (the mixture one-, two- and three-
parameter logistic IRT models) via the use of Gibbs sampling, and found that 
BIC was the most effective, while AIC tended to choose more complex models 
in certain conditions and DIC was the least effective method. Similarly, Nylund 
et  al. (2007) examined the performance of four information criteria including 
AIC, BIC, CAIC, and SABIC in detecting the number of classes for three mix-
ture models (the latent class analysis, the factor mixture model, and the mixture 
growth model), and concluded that BIC and SABIC were better than AIC in iden-
tifying the correct number of classes and that this performance improved as the 
total sample size increased. They further noted that CAIC performed well in cor-
rectly identifying the number of classes for most conditions except for the most 
complicated model (i.e., the 10-item categorical latent class analysis model with 
a complex structure and unequal class sizes). Sen et  al. (2019), while examin-
ing the performance of AIC, BIC, CAIC, and SABIC in detecting the best fitting 
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multivariate mixture Rasch model with a varying number of classes at the student 
level and school level, concluded that CAIC and BIC performed better than AIC 
or SABIC in identifying the correct model.

The performance of fully Bayesian measures such as WAIC and LOO has been 
investigated in the context of unidimensional IRT models. For example, Luo and 
Al-Harbi (2017) compared their performances with four popular methods: the likeli-
hood ratio test (LRT; Neyman and Pearson 1933), AIC, BIC, and DIC, for fitting 
dichotomous IRT models including the conventional one-, two-, and three-parameter 
logistic IRT models. Their results showed that WAIC and LOO performed consist-
ently better than the other four criteria, especially for fitting the 3PL model. For pol-
ytomous IRT models [e.g., the graded response model (GRM; Samejima 1969), the 
rating scale model (RSM; Andrich 1978), the partial credit model (PCM; Masters 
1982), and the generalized partial credit model (GPCM; Muraki 1992)], Luo (2019) 
compared the performances of WAIC and LOO with AIC, BIC, AICc, SABIC, and 
DIC and found that all the seven measures had relatively high statistical power in 
detecting the true polytomous IRT model with the frequentist-based measures 
(AIC, BIC, AICc, and SABIC) performing slightly better than the Bayesian ones 
(DIC, LOO, and WAIC). Moreover, da Silva et al. (2018) suggested to employ DIC, 
WAIC, and LOO over expected AIC (Brooks et al. 2002) or expected BIC (Carlin 
and Louis 2001) in fitting polytomous IRT models (GRM and GPCM), especially 
for data with small sample sizes (e.g., 50–150 persons) and short tests (e.g., 7–15 
items). Nevertheless, to date, WAIC, LOO or WBIC has not been considered or 
evaluated for MixIRT models. It is hence necessary to explore their usage under the 
MixIRT framework in identifying the number of latent classes.

In view of the above, this study is to assess the performance of fully Bayesian 
information criteria, namely LOO, WAIC, and WBIC in terms of the accuracy in 
determining the number of latent classes of a MixIRT model by comparing it to the 
conventional IRT model. For the sake of comparisons, AIC, BIC, CAIC, SABIC, 
and DIC were considered in this study. The rest of the paper is organized as follows. 
Section 2 briefly describes a form of the MixIRT model with its prior specifications 
as implemented in NUTS, followed by Sect. 3 where we describe all the information 
criteria considered in this study. In Sect. 4, a Monte Carlo simulation study is pre-
sented to evaluate the performance of the three fully Bayesian measures in fitting a 
MixIRT model via NUTS while comparing them with other measures. Its results are 
summarized in Sect. 5 for tests with multiple latent populations and for those with a 
single population, with a few remarks discussed in Sect. 6.

2 � Model and prior specifications

This study focuses on evaluating the three fully Bayesian information criteria 
in detecting the number of latent classes of the mixture two-parameter logistic 
(Mix2PL) model via implementing NUTS and further on comparing them with 
other information criteria. The model and its prior specifications as implemented in 
NUTS are briefly described in this section.
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2.1 � Two‑parameter mixture IRT model

In the Mix2PL model, the conventional 2PL IRT model is assumed to hold for 
each latent class, allowing the item difficulty and discrimination parameters to dif-
fer for different classes. Moreover, each person is parameterized by a class mem-
bership parameter g and a class-specific ability parameter θig, whereas each item is 
parameterized by a different set of difficulty and discrimination parameters for each 
latent class. The probability of a correct (Yij = 1) response for person i to item j in the 
Mix2PL IRT model is defined as

where g = 1, 2,…, G is the latent class indicator; bjg and ajg denote the difficulty and 
discrimination parameters, respectively, for item j in the gth class; θig denotes the 
ability for person i who belongs to class g; and πg denotes the proportion of persons 
in each class (i.e., the mixing proportion) such that these proportions sum to one. 
In  situations where there is only one latent class (i.e., G = 1), the Mix2PL model 
shown in Eq. (1) is reduced to the conventional 2PL model as defined in Eq. (2):

where θi is the ability of person i, and bj and aj are difficulty and discrimination 
parameters, respectively, for item j.

2.2 � NUTS and prior specification

In the fully Bayesian framework, common MCMC algorithms such as Gibbs sam-
pling (Geman and Geman 1984) and Metropolis–Hastings (MH; Hastings 1970; 
Metropolis and Ulam 1949) explore the posterior distribution via simple random 
walk proposals, and as a result, a large number of iterations are needed to sufficiently 
explore the parameter space. Conversely, non-random walk MCMC algorithms such 
as Hamiltonian Monte Carlo (HMC; Duane et al. 1987; Neal 2011) and the no-U-
turn sampler (NUTS; Hoffman and Gelman 2014) avoid the inefficient exploration 
of the parameter space. HMC is a powerful tool, but its performance depends on 
choosing suitable values for the step size parameter ε and the number of leapfrog 
steps L (Hoffman and Gelman 2014). Tuning these parameters, and specifically L 
requires some expertise and preliminary runs (Hoffman and Gelman 2014; Neal 
2011). NUTS is an extension of HMC that eliminates the need to specify the number 
of leapfrog steps parameter L. This is achieved using a criterion based on the dot 
product between the current momentum r̃  and the distance between the proposal 
and the initial value of the model parameter � , which is proportional to the progress 
one would make away from the starting point � . This algorithm in which one runs 

(1)P
(
Yij = 1
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=

G∑

g=1
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leapfrog steps until ( ̃� − �) ∙ r̃  is less than 0, however, does not ensure time revers-
ibility and hence convergence to the correct distribution is not ensured. This issue 
is resolved using a recursive algorithm in which NUTS creates a set of candidate 
values that spans a wide path of the target distribution, stopping automatically when 
it starts to make a U-turn (Hoffman and Gelman 2014), at which point NUTS stops 
the simulation and samples from the set of values computed during the simulation. 
In practice, NUTS performs as efficient as, and sometimes better than, a well-tuned 
HMC without requiring user interventions.

To implement NUTS for the Mix2PL model in this study, priors and hyperpriors 
have been specified to be similar to those used by others (e.g., Meyer 2010; Li et al. 
2009) such that normal prior densities were assumed for person ability parameters 
θig ~ N(μg, 1), with a standard normal distribution for the hyperparameters μg, and a 
Dirichlet distribution for the mixing-proportion parameters (π1, …, πG) ~ Dirichlet(1, 
…,1); a standard normal prior was considered for the class-specific difficulty param-
eters, and a truncated normal prior for the class-specific discrimination parameters 
ajg ~ N(0, ∞)(0, 1). In addition, the sum-to-one constraint on the mixing proportions 
was achieved by assigning the mixing proportions a unit simplex, and the problem 
of label switching was resolved by imposing an ordinal constraint on the mean abil-
ity (μg) parameters and the item difficulty parameters (bg).

3 � Information criteria

Information criteria are statistical measures for the comparative evaluation among 
candidate models, and they provide ways to assess a model based on its log-likeli-
hood and complexity. Among the various measures considered in the IRT literature, 
AIC, BIC, CAIC, and SABIC are frequentist information criteria that have been 
developed based on the MLE method, and can be calculated as

where d is the number of estimated parameters,  log(L) is the natural logarithm of 
the likelihood function obtained from the MLE, and n is the sample size. These 
information criteria may provide different solutions to the same data due to differ-
ences in the penalty function applied to the likelihood. It is noted that in the lit-
erature, AIC is argued to be an inconsistent measure, and that given consistency is 
an asymptotic property expected from a model-selection method, Bozdogan (1987) 
proposed CAIC, an asymptotically consistent measure that includes a penalty for 

(3)AIC = −2log(L) + 2d,

(4)BIC = −2log(L) + d
[
log(n)

]
,

(5)CAIC = −2log(L) + d
[
log(n) + 1

]
,

(6)SABIC = −2log(L) + d
[
log

(
n + 2

24

)]
,



99

1 3

Behaviormetrika (2023) 50:93–120	

models with larger numbers of parameters using the sample size n. In addition, 
BIC applies a penalty term that uses both the number of parameters and the sample 
size, and has been found to be somewhat more accurate than AIC for selection of 
MixIRT models (Li et al. 2009; Preinerstorfer and Formann 2012). Sugiura (1978) 
introduced a sample-size-adjusted form of BIC (SABIC) that replaces n in the BIC 
equation with ( n + 2)∕24. Similar to BIC, the penalty for adding more parameters 
is represented by both the number of parameters and the sample size. The penalty 
term, however, is not as large as that in BIC. These frequentist measures are suitable 
when model parameters are estimated using the MLE estimation method. Neverthe-
less, they can be applied to the fully Bayesian setting via an approach described 
by Congdon (2003), where the MLE-based deviance value, −2log(L) , is replaced 
with the posterior mean of the deviance D(�) obtained using an MCMC algorithm 
(Congdon 2003) such as NUTS, in which � denotes all model parameters. Cong-
don (2003) pointed out the limitation of the frequentist measures in likelihood com-
parisons of discrete mixture models involving varying numbers of classes while the 
process involved in Bayesian model selection is simpler and has advantages in com-
paring non-nested models. This approach has been adopted by multiple studies that 
implemented a random-walk MCMC algorithm (i.e., Gibbs sampler) in the mixture 
IRT literature either to evaluate the performance of, e.g., AIC and BIC in detecting 
the correct MixIRT model (e.g., Li et al. 2009; Sen et al. 2019) or to inform model 
selection (Cho et al. 2013; Sen et al. 2016), and consequently, is considered by this 
study.

In the context of Bayesian estimation, Spiegelhalter et  al. (2002) proposed the 
deviance information criterion (DIC), a Bayesian counterpart of the AIC measure 
that is defined as

where pDIC is the effective number of parameters defined as

where D(�̂  ) is the deviance obtained from the posterior estimates of the parame-
ters. Given that D(�̂) is based on a point estimate instead of the entire posterior dis-
tribution, DIC is not considered as a fully Bayesian measure. Vehtari et al. (2017) 
specifically pointed out that its effective number of parameters for a model can 
result in negative values, while Plummer (2008) noted to the argument in the litera-
ture between the advantages of DIC in practice and the lack of a clear theoretical 
foundation.

AIC and BIC can be used for assessing statistical models when such models are reg-
ular, and the likelihood function can be approximated by a normal distribution (Wata-
nabe 2021). For statistical models with a hierarchical structure or with latent variables 
(i.e., singular models), where regularity is not met, two fully Bayesian information cri-
teria, namely WAIC (Watanabe 2010) and WBIC (Watanabe 2013), were proposed as 
generalizations of AIC and BIC, respectively. These information criteria estimate the 
generalization loss (i.e., the average minus log predictive likelihood) and the Bayes free 

(7)DIC = D(�) + pDIC,

(8)pDIC = D(�) − D(�̂),
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energy (i.e., the minus logarithm of Bayes marginal likelihood), respectively (Watanabe 
2021). WBIC is specifically defined as

where � = 1∕log(n) is the inverse temperature and E�

�
[G(�)], for an arbitrary func-

tion G(�), is the expectation over the posterior distribution under the inverse temper-
ature � , defined as follows

where �(�) denotes the prior probability density function of a given model param-
eter 𝜉 ⊂ Ξ . It is noted that for regular models, WBIC reduces to BIC (Watanabe 
2013). Watanabe (2021) further described the mathematical foundation of WBIC 
and discussed its application to a normal mixture model, a common singular model.

In addition, WAIC and LOO are two fully Bayesian information criteria that esti-
mate the predictive accuracy of the fitted model using available data, without waiting 
for out-of-sample data (Gelman et al. 2014). WAIC estimates the out-of-sample expec-
tation by first computing a log pointwise posterior predictive density (LPPD) of the 
data, which is defined as

where ppost (�) = p(�|y) is the posterior distribution of model parameters � . In prac-
tice, LPPD is computed by evaluating the expectation via sampling from the poste-
rior distribution ppost (�) such that

where s = 1, 2, …, S denotes the number of simulation samples from the poste-
rior density. After computing the LPPD, WAIC is obtained by adding a correction 
( pWAIC ) for the effective number of parameters to adjust for overfitting

The correction term, pWAIC , can be computed in the following two ways:

(9)WBIC = E
�

�

[
nLn(�)

]
,

(10)E
�

�
[G(�)] =
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p(yi��)��(�)d�
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i=1
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,

(11)LPPD =

n∑

i=1
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(12)LPPD =
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log
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1

S

S∑
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p(yi|�s)
]
,

(13)WAIC = −2LPPD + 2pWAIC.

(14)pWAIC1 = 2
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i=1

log
(
Epostp(yi|�)
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− Epost

(
log

(
p(yi|�)
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,

(15)pWAIC2 =
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i=1

varpost
[
log

(
p(yi|�)
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.
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The second adjustment as expressed in Eq. (15) is more computationally stable 
since summing the variance for each data point produces stability (Gelman et  al. 
2014), and is implemented in the R package loo (Vehtari et al. 2017), which is used 
for computation of both WAIC and LOO. LOO, on the other hand, is tied with 
Bayesian cross-validation studies, where a dataset is repeatedly partitioned into a 
training set and a validation set. The model of interest is fitted to the training set to 
obtain the posterior distribution, with which the fit of the model to the validation set 
is evaluated. LOO is a special case of cross-validation in which one data point is left 
out each time and the LPPD is computed with the remaining data points as follows

where ppost(−i)(�) is the posterior distribution without the ith data point, and is com-
puted as

where �is is the sth simulated value from the posterior distribution conditioning on 
the dataset without the ith data point (Gelman et al. 2014). To place LOO on the 
same scale as WAIC, the computed LPPDLOO is multiplied by − 2. According to 
Gelman et al. (2014), WAIC is asymptotically equal to LOO. To obtain more accu-
rate estimate of LOO, Vehtari et  al. (2017) suggested fitting a Pareto distribution 
to the upper tail of the distribution of the importance weights (PSIS) and argued 
that PSIS smoothing approach would benefit from using stable importance weights. 
LOO, WAIC, and WBIC are less used in practice due to the requirement of addi-
tional computational steps. In spite of the computational expense, they have advan-
tages over simpler estimates in terms of being fully Bayesian measures that use 
the whole posterior distribution in contrast to point estimates such as AIC or DIC 
(Vehtari et al. 2017). Unlike simpler estimates, these fully Bayesian information cri-
teria can be used for singular models with hierarchical and mixture structures or for 
models with different prior specifications, and hence are expected to perform bet-
ter than point estimate-based information criteria in selecting or comparing singular 
complex models (Watanabe 2013) such as MixIRT models.

4 � Method

Monte Carlo simulations were carried out to investigate the performance of the three 
fully Bayesian information criteria in recovering the number of latent classes, via 
fitting the Mix2PL model using NUTS and further in comparing with other infor-
mation criterion measures when one or multiple latent classes exist. To ensure 
all Markov chains have converged to their stationary distributions, the number of 
warm-up iterations that should be discarded and the number of sampling iterations 
that should be used to estimate the posterior distribution were determined using the 

(16)LPPDLOO =

n∑

i=1

log∫ p(yi|�)ppost(−i)(�)d�,

(17)LPPDLOO =

n∑

i=1

log

[
1

S

S∑

s=1

p(yi|�is)
]
,
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Gelman-Rubin R statistic (Gelman and Rubin 1992) with a threshold of 1.10 as sug-
gested by Gelman et al. (2014), as non-convergence can result in inaccurate estima-
tion of model parameters for MixIRT models (Jang and Cohen 2020), which in turn 
can affect the model-data fit.

In the MixIRT literature, the sample size, the test length, and the number of latent 
classes appear to affect parameter recovery of the MixIRT model. For instance, Pre-
inerstorfer and Formann (2012) found that increasing both the sample size (500, 
1000, 2500) and the number of items (10, 15, 25, 40) led to higher accuracy in esti-
mating parameters of the mixture Rasch model. Moreover, Li et  al. (2009) found 
that recovery of item difficultly and discrimination parameters in different MixIRT 
models (i.e., mixture one-, two-, or three-parameter logistic models) differed based 
on the number of latent classes (1, 2, 3, 4), test lengths (6, 15, 30), and sample sizes 
(600, 1200). Difficulty and discrimination parameters were mostly affected by the 
number of latent classes such that when the number of latent classes increased, the 
recovery of model parameters was less accurate. Also, their results indicated that the 
root mean square error (RMSE) decreased as sample size and test length increased. 
The percentage of correct classifications of class membership for individual persons 
increased with an increase in test length. Different sets of sample size and test length 
conditions have been used in the MixIRT literature. For instance, Bilir (2009) and 
Samuelsen (2005) simulated sample sizes of 500 and 2000 with 20 items, while 
Meyer (2010) simulated the same sample sizes but with 25 items.

Equal mixing proportions were considered by many studies to simulate test data 
involving multiple latent classes for different purposes (e.g., Bolt et al. 2001, 2002; 
Meyer 2010; Cho et al. 2013). For example, Bolt et al. (2001) as well as Cho et al. 
(2013) set the mixing proportions for each latent class to be equal. Specifically, they 
set π = (0.50, 0.50) in the two-class condition, (0.33, 0.33, 0.33) in the three-class 
condition, and (0.25, 0.25, 0.25, 0.25) in the four-class condition. Similarly, Meyer 
(2010) and Bolt et  al. (2002) specified mixing proportions of π = (0.50, 0.50) for 
the speeded class and the non-speeded class. Further, Preinerstorfer and Formann 
(2012) found that item parameters were recovered more precisely in the condition of 
equally sized subgroups (i.e., π = 0.50, 0.50).

In the Monte Carlo simulations, two sets of test conditions were considered, 
with the first set treating the two-class Mix2PL model as the true model whereas 
the second set treating the conventional 2PL model as true. Simulation conditions 
were considered based on prior studies to reflect some practical considerations. 
Specifically, with binary item response data generated from each set of conditions 
for sample sizes (n = 500 and 1000) and test lengths (J = 15, 20, 30), NUTS was 
implemented to fit three candidate models, namely the 2PL model, the two-class 
Mix2PL model, and the three-class Mix2PL model (i.e., G = 1, 2 or 3). For the first 
set of test conditions, data were generated using the two-class Mix2PL model, as 
defined in Eq. (1), with equal mixing proportions (i.e., π1 = 0.50 and π2 = 0.50). The 
model parameters were generated such that the person ability parameters were gen-
erated from a mixture of two subpopulations where θ1 ~ N(− 2, 1) and θ2 ~ N(2, 1); 
the class-specific item difficulty parameters were generated from a uniform distribu-
tion where b1 ~ U(− 2, 0) and b2 ~ U(0, 2); and the class-specific item discrimination 
parameters were generated from a uniform distribution where ag ~ U(0, 2), g = 1 or 
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2. For the second set of test conditions, data were generated using the 2PL model, as 
defined in Eq. (2). The model parameters were generated such that the person ability 
parameters were generated from a standard normal distribution θ ~ N(0, 1); the item 
difficulty parameters were generated from a uniform distribution where b ~ U(− 2, 
2); and the item discrimination parameters were generated from a uniform distribu-
tion where a ~ U(0, 2).

To assess the recovery of the number of latent classes for each data set, the three 
fitted models were compared using the three fully Bayesian information criteria, 
namely WAIC, LOO, and WBIC, as well as other measures including AIC, BIC, 
CAIC, SABIC, and DIC. After computing the respective information criterion meas-
ure for each of the three candidate models, the model with the smallest value was 
selected as the best fitting model. With 50 replications, the proportion of the time 
the generating model was selected as the best fitting model indicates the accuracy of 
recovering the number of latent classes by each information criterion. In addition, 
the values of the eight information criteria were further averaged across replications 
to provide summary information. To increase the efficiency of computations, the 
simulations were carried out on a high-performance computing cluster that includes 
a total of 16,016 cores across 572 nodes and 2.2 PB of storage.

RStan (Stan Development Team 2020) was used to implement NUTS to fit the 
IRT models, and the Stan code for computing the posterior distribution under the 
inverse temperature � = 1∕log(n) is provided in Appendix 1. This code was used for 
fitting the conventional 2PL model and two- and three-class Mix2PL models before 
computing WBIC using R. The Stan code for computing the standard posterior dis-
tribution when the inverse temperature � = 1 is presented in Appendix 2. This code 
is similar to that in Appendix 1 except that the log-likelihood is multiplied by 1, and 
it was used for fitting the same models before computing the other information crite-
ria, AIC, BIC, CAIC, SABIC, DIC, LOO, and WAIC in R.

5 � Results

With four Markov chains, 1000–4000 warm-up iterations and 4000–12,000 sam-
pling iterations were used to ensure the convergence of each NUTS implementation, 
and specifically that the Gelman–Rubin R statistic was less than the recommended 
threshold of 1.10 for each model parameter in each simulated condition.

5.1 � Results for tests with subpopulations

The results for the first six conditions where data conformed to the two-class 
Mix2PL model are summarized in Tables 1, 2, 3 and 4 with Tables 1 and 2 dis-
playing the number and proportion of the time each model was identified as the 
best-fitting model according to each criterion (where the numbers in bold are for 
the model with the highest frequency/proportion among the three candidate mod-
els), and Tables 3 and 4 show the average information criteria and effective num-
ber of parameters averaged across the 50 replications (where the smallest average 
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values among the three models are marked in bold). An inspection of Tables  1 
and 2 reveals the following findings:

•	 Although AIC occasionally (1 out of 50 or 2% of the time) favored the correct 
two-class Mix2PL model when n = 1000 and J = 30, the four frequentist infor-

Table 1   Frequency (relative frequency) for selecting each candidate models where data conformed to the 
2-class Mix2PL model (n = 500)

The maximum frequency of selecting a model is 50. Values in bold represent the largest frequency out of 
the 50 replications

J Candidate 
model

Model selection method

LOO WAIC WBIC DIC AIC BIC CAIC SABIC

15 2PL 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 26 (0.52) 34 (0.68) 0 (0.00) 38 (0.76) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 24 (0.48) 16 (0.32) 50 (1.00) 12 (0.24) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

20 2PL 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 19 (0.38) 30 (0.60) 8 (0.16) 37 (0.74) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 31 (0.62) 20 (0.40) 42 (0.84) 13 (0.26) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

30 2PL 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 19 (0.38) 21 (0.42) 49 (0.98) 41 (0.82) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 31 (0.62) 19 (0.58) 1 (0.02) 9 (0.18) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

Table 2   Frequency (relative frequency) for selecting each candidate models where data conformed to the 
2-class Mix2PL model (n = 1000)

The maximum frequency of selecting a model is 50. Values in bold represent the largest frequency out of 
the 50 replications

J Candidate 
model

Model selection method

LOO WAIC WBIC DIC AIC BIC CAIC SABIC

15 2PL 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 25 (0.50) 36 (0.72) 0 (0.00) 42 (0.84) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 25 (0.50) 14 (0.28) 50 (1.00) 8(0.16) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

20 2PL 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 28 (0.56) 35 (0.70) 7 (0.14) 47 (0.94) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 22 (0.44) 15 (0.30) 43 (0.86) 3 (0.06) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

30 2PL 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 49 (0.98) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 21 (0.42) 28 (0.56) 48 (0.96) 44 (0.88) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 29 (0.58) 22 (0.44) 2 (0.04) 6 (0.12) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
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mation criteria (namely, AIC, BIC, CAIC, and SABIC) consistently preferred 
the simpler 2PL model regardless of test length or sample size.

•	 On the other hand, the three Bayesian information criteria, LOO, WAIC and 
DIC, tended to choose either the correct two-class model or a more complicated 
three-class model. Among the three information criteria, DIC performed the 
best, followed by WAIC, and then LOO.

•	 Performance of DIC or WAIC seemed to be affected by sample size, as larger 
sample sizes tended to result in a higher likelihood of selecting the correct 
model; for example, with J = 15, DIC (WAIC) selected the correct two-class 
Mix2PL model 76% (68%) of the time when n = 500 vs. 84% (72%) of the time 
when n = 1000. This is, however, not observed with other information criteria.

•	 WBIC performed poorly when J < 30 as it consistently selected the more com-
plicated model; when J = 30, it was able to identify the correct model more than 
95% of the time regardless of sample size.

These findings are consistent to those from Tables 3 and 4, where we see that 
after averaging, AIC, BIC, CAIC, and SABIC were consistently smaller for the sim-
pler 2PL model. DIC, on the other hand, consistently selected the correct two-class 
Mix2PL model. Among the three fully Bayesian information criteria, LOO tended 
to favor the more complex three-class model. It is, however, noted that the three-
class solution did not differ much from the two-class solution as the difference of the 
average values of LOO between the two-class Mix2PL model (correct model) and 
the three-class Mix2PL model was less than 1.0 when n = 1000 or J > 15. As a mat-
ter of fact, average LOO and WAIC values for fitting the two-class and three-class 
models were almost identical for these test length and sample size conditions. In 
addition, the average WAIC was able to identify the correct two-class model across 
all the simulated conditions except when n = 500 and J = 30. The average WBIC, on 
the other hand, performed better when test length increased as it selected the correct 
model only when J = 30 and in other conditions, WBIC preferred the more com-
plicated three-class model. It is further noted that the average effective number of 
parameters for WAIC, LOO or DIC was the smallest for fitting the correct two-class 
Mix2PL model.

Furthermore, as suggested by Gelman et  al. (2014), when deciding on the best 
fitting model, the effective number of parameters associated with Bayesian infor-
mation criteria should also be taken into account, especially when the differences 
between the values of these measures for the candidate models are small, such that 
the simpler model is preferred over the more complex one. This is particularly true 
for LOO and WAIC, as the average effective number of parameters for the two 
measures as presented in Tables 3 and 4 indicates that the two-class Mix2PL model 
was the least complex and shall be preferred although LOO tended to favor the 
more complex three-class Mix2PL model across all the simulated conditions except 
when n = 500 and J = 15 and WAIC tended to favor the more complex three-class 
Mix2PL model when n = 500 and J = 30. For example, in conditions where n = 500 
and J = 30, the average effective number of parameters for the two-class Mix2PL 
model (pLOO = 422.834, pWAIC = 418.842) was relatively smaller compared to the 
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three-class Mix2PL model (pLOO = 424.094, pWAIC = 420.508) or the 2PL IRT model 
(pLOO = 472.259, pWAIC = 467.023) although LOO or WAIC was slightly larger for 
the two-class model (LOO = 14,856.803, WAIC = 14,848.819) as compared to the 
three-class model (LOO = 14,855.829, WAIC = 14,848.657). Hence, we recommend 
that when using LOO or WAIC for comparing candidate models in practice, one 
shall also consider their effective number of parameters, especially when the dif-
ference between these values for candidate models is small. It is also noted that the 
conventional 2PL model (i.e., the one-class Mix2PL model), with relatively larger 
average values, was never preferred by any of the Bayesian information criteria 
when data involved multiple subpopulations.

5.2 � Results for tests with a single population

The results for the second six conditions where data conformed to the conventional 
2PL IRT model are summarized in Tables 5, 6, 7 and 8 with Tables 5 and 6 display 
the number and proportion of the time each model was identified as the best fit-
ting model according to each information criterion, and Tables  7 and 8 show the 
average information criteria and effective number of parameters averaged across 50 
replications, where the numbers in bold in Tables 5 and 6 are for the model with the 
highest frequency/proportion of being chosen as the best-fitting model, and those in 
Tables 7 and 8 are the smallest average values among the three candidate models. A 
close examination of Tables 5 and 6 indicate the following:

•	 The four frequentist information criteria, namely AIC, BIC, CAIC, and SABIC, 
consistently selected the correct 2PL model regardless of sample size or test 
length.

Table 5   Frequency (relative frequency) for selecting each candidate model when data conformed to the 
2PL model (n = 500)

The maximum frequency of selecting a model is 50. Values in bold represent the largest frequency out of 
the 50 replications

J Candidate 
model

Model selection method

LOO WAIC WBIC DIC AIC BIC CAIC SABIC

15 2PL 30 (0.60) 39 (0.78) 48 (0.96) 41 (0.82) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 12 (0.24) 6 (0.12) 2 (0.04) 5 (0.10) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 8 (0.16) 5 (0.10) 0 (0.00) 4 (0.08) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

20 2PL 37 (0.74) 44 (0.88) 47 (0.94) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 10 (0.20) 6 (0.12) 3 (0.06) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 3 (0.06) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

30 2PL 39 (0.78) 42 (0.84) 44 (0.88) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 6 (0.12) 4 (0.08) 3 (0.06) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 5 (0.10) 4 (0.08) 3 (0.06) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
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•	 DIC identified the correct 2PL model fairly well especially for J ≥ 20, where its 
accuracy ranges from 94 to 100%.

•	 Among the three fully Bayesian information criteria, with a few replications 
favoring the two- or three-class MixIRT model, LOO and WAIC tended to go 
with more complex models with LOO being more toward this tendency; WBIC 
tended to favor the correct 2PL model more frequently and hence is more pre-
ferred than WAIC or LOO.

These findings are consistent with results presented in Tables 7 and 8. Specifi-
cally, after averaging, LOO, WAIC, WBIC, AIC, BIC, CAIC, and SABIC consist-
ently favored the correct 2PL model regardless of sample size or test length. Test 
length may have an effect on the average DIC, as it tended to favor a more complex 
MixIRT model when J = 15. It is noted that some of the average LOO values for 
the two-class solution did not differ much from the one-class solution as the differ-
ence of the average values of LOO between the 2PL model (correct model) and the 
two-class Mix2PL model was only 0.18 for n = 500 and J = 15. In effect, the Bayes-
ian approach resulted in almost identical average information (especially LOO and 
WAIC) in fitting the correct 2PL model and the more complicated MixIRT models 
regardless of sample size or test length. Moreover, the average effective number of 
parameters for LOO or WAIC is consistently the smallest for the correct 2PL model.

The average effective number of parameters associated with both LOO and 
WAIC, as presented in Tables 7 and 8, indicates that the 2PL model was the least 
complex across all the conditions. For example, in conditions where n = 1000 
and J = 15, the average effective number of parameters for the 2PL IRT model 
(pLOO = 722.034, pWAIC = 711.098) was relatively smaller compared to that of the 

Table 6   Frequency (relative frequency) for selecting each candidate model when data conformed to the 
2PL model (n = 1000)

The maximum frequency of selecting a model is 50. Values in bold represent the largest frequency out of 
the 50 replications

J Candidate 
model

Model selection method

LOO WAIC WBIC DIC AIC BIC CAIC SABIC

15 2PL 39 (0.78) 44 (0.88) 42 (0.84) 43 (0.86) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 8 (0.16) 5 (0.10) 8 (0.16) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 3 (0.06) 1 (0.02) 0 (0.00) 7 (0.14) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

20 2PL 31 (0.62) 39 (0.78) 44 (0.88) 47 (0.94) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 14 (0.28) 9 (0.18) 5 (0.10) 2 (0.04) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 5 (0.10) 2 (0.04) 1 (0.02) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)

30 2PL 32 (0.64) 40 (0.80) 42 (0.84) 47 (0.94) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
2C-Mix2PL 8 (0.16) 5 (0.10) 4 (0.08) 2 (0.04) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
3C-Mix2PL 10 (0.20) 5 (0.10) 4 (0.08) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Total 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00) 50 (1.00)
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two-class Mix2PL model (pLOO = 728.422, pWAIC = 718.398) or the three-class 
Mix2PL model (pLOO = 732.171, pWAIC = 722.650). Therefore, following our recom-
mendation for tests involving multiple latent subpopulations, we again see the poten-
tial benefit of considering the effective number of parameters when LOO or WAIC 
is used in comparing candidate models where a single latent population is assumed.

6 � Discussion and conclusion

This study focuses on the performance of fully Bayesian information criteria, 
namely, LOO, WAIC, and WBIC, in terms of the accuracy in determining the num-
ber of latent classes of the Mix2PL model while comparing it to the conventional 
2PL model and further in terms of comparison with other information criteria 
including AIC, BIC, CAIC, SABIC, and DIC.

Regarding the accuracy in determining the number of latent classes, for the con-
dition where data conformed to the two-class Mix2PL model, the results indicate 
that among the three fully Bayesian information criteria, WBIC shall only be used 
when tests consist of at least 30 items; WAIC performed slightly better than LOO in 
recovering the number of latent classes, although the proportion of the time the cor-
rect model was selected as the best fitting model, for both measures, decreased com-
pared to the situation where the generated model was the conventional 2PL model. 
When considering other information criteria, it is found that the frequentist informa-
tion criteria all failed to identify the correct model as they consistently favored the 
simpler 2PL IRT model. DIC, on the other hand, has outperformed both the fre-
quentist and fully-Bayesian information criteria. On the other hand, for the condi-
tion where data conformed to the conventional 2PL model, the results indicate that 
among the three fully Bayesian information criteria, WBIC performed better than 
WAIC or LOO alone in recovering the number of latent classes in terms of the pro-
portion of the time the correct model was selected as the best fitting model. In addi-
tion, when considering other information criteria, it is found that all the frequentist 
information criteria consistently favored the correct 2PL model and the Bayesian 
information criterion DIC performed similarly if not better than WBIC. Summariz-
ing across the two simulated test conditions, we make the following conclusions:

1.	 AIC, BIC, and their related CAIC and SABIC tend to select the simpler model 
and are not recommended when the actual data involve multiple latent classes. 
While this finding differs from those from previous studies evaluating their per-
formances via other fully Bayesian estimation algorithms such as Gibbs sampling, 
it can be explained by citing Watanabe’s (2021) argument that if AIC and BIC 
are used in model selection, the best model with the smallest values of both the 
generalization loss and the free energy are not chosen, rather tighter (or smaller) 
models are selected.

2.	 DIC alone performs equally well and sometimes better than some of the frequen-
tist or fully-Bayesian criterion measures especially when sample size is relatively 
large (with e.g., 1000 or more subjects). This finding, however, differs from those 
from previous studies such as Li et al. (2009) and needs further validation.
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3.	 For the three fully Bayesian information criteria, WBIC can be used for detecting 
the number of latent classes for tests with at least 30 items; WAIC and LOO alone 
are not suggested for fitting the MixIRT models, and they shall be used together 
with their effective number of parameters in choosing the correct number of latent 
classes.

It is noted the fully Bayesian information criteria alone can sometimes favor 
a more complicated model such as the two- or three-class Mix2PL model when 
data involve one or two latent subpopulations, respectively. This can be explained 
by what Watanabe (2021) noted: for a normal mixture model such as MixIRT, 
neither the generalization loss estimated by WAIC (or LOO) nor the free energy 
estimated by WBIC increases “even if the statistical model is redundant” (p. 18) 
as the case with regular statistical models; thus, WAIC (and similarly LOO) or 
WBIC does not increase either and hence the more complicated (or redundant) 
model may be selected more often.

In addition, for test conditions where data conformed to the two-class Mix2PL 
model, it is noted that although in the simulation study, LOO, WAIC, and WBIC 
sometimes selected the more complex three-class Mix2PL model as the best fit-
ting model, the average proportion of persons (across the 50 replications) for one 
of the three classes was relatively low (see Table 9). For example, for test situa-
tions with 15 items, the average proportion of persons in one of the three classes 
was 0.14 with a sample size of 500 and 0.12 with a sample size of 1000. Same 
observation was made for the condition where data conformed to the conven-
tional 2PL model, where LOO, WAIC, and WBIC sometimes selected the more 
complex and yet incorrect two-class Mix2PL model as the best fitting model. The 
average proportion of persons (across the 50 replications) for each class is sum-
marized in Table 10 and suggests that the average proportion for one of the two 
classes was relatively very low. For example, for tests with 20 items, the aver-
age proportion of persons in one of the two classes of the Mix2PL model was 
0.03 for both sample sizes, 500 and 1000. These results, in general, indicate that 
when a more complex while incorrect model was selected by one or more of the 
fully Bayesian criteria without considering the effective number of parameters, 
the proportion of persons in one of the classes can be relatively low.

Table 9   The average proportion 
of persons in each class for 
incorrect the 3-class Mix2PL 
model where the generating 
model was the 2-class Mix2PL 
model

3-class Mix2PL

�̂1 �̂2 �̂3

J = 15 500 0.14 0.41 0.45
1000 0.12 0.42 0.46

J = 20 500 0.13 0.42 0.46
1000 0.10 0.43 0.46

J = 30 500 0.11 0.43 0.46
1000 0.07 0.45 0.48



114	 Behaviormetrika (2023) 50:93–120

1 3

Given the results displayed in Tables  9 and 10, caution should be taken when 
fully Bayesian criteria such as LOO, WAIC, or WBIC select a more complicated 
model as the best fitting model. A further step should be taken to understand the 
nature of the estimated mixing proportions of the complex model favored by such 
information criteria.

Our findings that LOO tends to favor a more complex model and is less preferred 
than WAIC for fitting MixIRT models, however, differ from those of Luo and Al-
Harbi (2017), who compared WAIC and LOO for conventional IRT models and con-
cluded that WAIC had a slightly lower detection rate than LOO (although the differ-
ence is negligible) in the condition where the generating model was the conventional 
one-parameter IRT model. Similarly, these results differ from those of Luo (2019) 
who compared WAIC and LOO with the DIC, AIC, BIC, AICc, SABIC for polyto-
mous IRT models, where the results indicated the detection rate of WAIC (0.935) 
was slightly lower than that of LOO (0.946). This difference may be a result of the 
models considered; namely, LOO tends to work well for unidimensional models 
with varying number of parameters whereas WAIC tends to work well for models 
with more complex latent structure. This certainly needs to be confirmed with addi-
tional studies.

Further, our result where the frequentist information criteria consistently favored 
the simpler IRT model when the test involved multiple latent subpopulations could 
be directly tied with how these indices were computed in the fully Bayesian frame-
work. In this study, we followed Congdon (2003) to replace the MLE-based devi-
ance, −2log(L) , with the posterior mean of the deviance as it has been commonly 
adopted in studies on MixIRT models. While this result differed from previous stud-
ies that warrant additional investigations, it suggests potential limitations of using 
the posterior mean of the deviance as suggested by Congdon (2003) for fully Bayes-
ian estimation especially with non-random walk MCMC algorithms, as it may not 
correspond to the maximized likelihood, and hence calls for alternative approaches. 
Additional research should be carried out to further evaluate this.

Given the computational expense, we focused on the two-parameter models in 
this study to consider a few sample-size and test-length conditions assuming equal 
mixing proportions for test situations where data involve one or two subpopula-
tions. Future research can consider other test conditions or those with more than two 
latent classes. Additional studies can also investigate the performance of these fully 

Table 10   The average 
proportion of persons in each 
class for the incorrect 2-class 
and 3-class Mix2PL models 
where the generating model was 
the conventional 2PL model

2-class Mix2PL 3-class Mix2PL

�̂1 �̂2 �̂1 �̂2 �̂3

J = 15 500 0.06 0.94 0.03 0.05 0.92
1000 0.03 0.97 0.02 0.04 0.94

J = 20 500 0.03 0.97 0.02 0.03 0.95
1000 0.03 0.97 0.02 0.03 0.96

J = 30 500 0.02 0.98 0.01 0.02 0.97
1000 0.02 0.98 0.01 0.02 0.97
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Bayesian information criteria in selecting the true model using different MixIRT 
models such as the dichotomous mixture one-parameter (Mix1PL) or three-parame-
ter (Mix3PL) model or polytomous MixIRT models. In addition, for simulation con-
ditions where data involved two latent classes, person ability parameters were gen-
erated from distributions with their locations being four standard deviations apart, 
i.e., θ1 ~ N(− 2, 1) and θ2 ~ N(2, 1), to minimize potential overlap between the two 
subpopulations. Further studies can consider situations where the latent classes are 
from distributions with closer location parameters. Finally, future study can consider 
implementing Mixture IRT models using NUTS to real data problems to identify the 
number of latent classes using the fully Bayesian information criteria, while follow-
ing guidelines from the Monte Carlo simulations.

Appendix 1. Stan code for computing the posterior distribution 
under the inverse temperature � = 1∕log(n)

data {
int < lower = 1 > K;
int < lower = 1 > N;
int < lower = 1 > J;
int < lower = 0,upper = 1 > y[N,J];
vector < lower = 0 > [K] dir_alpha;}

parameters {
simplex[K] pi;
ordered[K] mu;
ordered[K] beta[J];
vector < lower = 0 > [K] alpha[J];
vector[N] theta;}

model {
real lps[K];
real p[K];
real lpth[K];
for (k in 1:K){
mu[k] ~ normal(0, 1);}
pi ~ dirichlet(dir_alpha);
for (j in 1:J){
for (k in 1:K){
beta[j,k] ~ normal (0,1);
alpha[j,k] ~ normal(0,1);}}
for (i in 1:N){
for (k in 1:K){
lpth[k] = log(pi[k]) + normal_lpdf(theta[i] | mu[k], 1);}
target +  = log_sum_exp(lpth);}
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for (i in 1:N){
for (j in 1:J){
for (k in 1:K){
p[k] = inv_logit( alpha[j,k]*(theta[i]-beta[j,k]));
lps[k] = log(pi[k]) + bernoulli_lpmf(y[i,j] | p[k]);}
target +  = (1.0/log(N)) * log_sum_exp(lps);}}}
generated quantities{
real p[K];
vector[K] log_likk[N,J];
vector[J] log_lik[N];
for (i in 1:N){
for (j in 1:J){
for (k in 1:K){
p[k] = inv_logit( alpha[j,k]*(theta[i]-beta[j,k]));
log_likk[i, j, k] = log(pi[k]) + bernoulli_lpmf(y[i,j] | p[k]);}
log_lik[i, j] = log_sum_exp(log_likk[i, j]);}}}

Appendix 2. Stan code for computing the posterior distribution 
under the inverse temperature � = 1

data {
int < lower = 1 > K;
int < lower = 1 > N;
int < lower = 1 > J;
int < lower = 0,upper = 1 > y[N,J];
vector < lower = 0 > [K] dir_alpha;}

parameters {
simplex[K] pi;
ordered[K] mu;
ordered[K] beta[J];
vector < lower = 0 > [K] alpha[J];
vector[N] theta;}

model {
real lps[K];
real p[K];
real lpth[K];
for (k in 1:K){
mu[k] ~ normal(0, 1);}
pi ~ dirichlet(dir_alpha);
for (j in 1:J){
for (k in 1:K){
beta[j,k] ~ normal (0,1);
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alpha[j,k] ~ normal(0,1);}}
for (i in 1:N){
for (k in 1:K){
lpth[k] = log(pi[k]) + normal_lpdf(theta[i] | mu[k], 1);}
target +  = log_sum_exp(lpth);}
for (i in 1:N){
for (j in 1:J){
for (k in 1:K){
p[k] = inv_logit( alpha[j,k]*(theta[i]-beta[j,k]));
lps[k] = log(pi[k]) + bernoulli_lpmf(y[i,j] | p[k]);}
target +  = log_sum_exp(lps);}}}
generated quantities{
real p[K];
vector[K] log_likk[N,J];
vector[J] log_lik[N];
for (i in 1:N){
for (j in 1:J){
for (k in 1:K){
p[k] = inv_logit( alpha[j,k]*(theta[i]-beta[j,k]));
log_likk[i, j, k] = log(pi[k]) + bernoulli_lpmf(y[i,j] | p[k]);}
log_lik[i, j] = log_sum_exp(log_likk[i, j]);}}}
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